国产第1页_91在线亚洲_中文字幕成人_99久久久久久_五月宗合网_久久久久国产一区二区三区四区

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >>
邊界積分-微分方程方法的數學基礎(英文版)

包郵 邊界積分-微分方程方法的數學基礎(英文版)

出版社:清華大學出版社出版時間:2024-07-01
開本: 其他 頁數: 320
本類榜單:自然科學銷量榜
中 圖 價:¥104.3(7.0折) 定價  ¥149.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

邊界積分-微分方程方法的數學基礎(英文版) 版權信息

  • ISBN:9787302664734
  • 條形碼:9787302664734 ; 978-7-302-66473-4
  • 裝幀:精裝
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>>

邊界積分-微分方程方法的數學基礎(英文版) 本書特色

《邊界積分-微分方程方法的數學基礎(英文版)》主要討論邊界積分-微分方程的數學基礎理論,可供計算數學與機械工程相關領域的研究人員和研究生參考使用。

邊界積分-微分方程方法的數學基礎(英文版) 內容簡介

本書主要討論邊界積分-微分方程的數學基礎理論,主要集中于把傳統的邊界積分方程中的超奇異積分轉化為帶弱奇性的邊界積分-微分方程。本書簡要地介紹了分布理論,而邊界積分方程方法是基于線性偏微分方程基本解的,所以對微分方程的基本解也做了較為詳細的介紹。在余下的章節里,本書依次討論了Laplace方程、Helmholtz方程、Navier方程組、Stokes方程等邊界積分-微分方程方法和理論。還討論了某系非線性方程如:如熱輻射、變分不等式和Steklov特征值問題的邊界積分-微分方程理論。*后討論了有限元和邊界元的對稱耦合問題。

邊界積分-微分方程方法的數學基礎(英文版) 目錄

Chapter 1 Distributions 1
1.1 Space of Test Functions 2
1.2 Definition of Distributions and Their Operations 3
1.3 Direct Products and Convolution of Distributions 8
1.4 Tempered Distributions and Fourier Transform 11
References 15
Chapter 2 Fundamental Solutions of Linear Differential Operators 16
2.1 Definition of Fundamental Solution 16
2.2 Elliptic Operators 19
2.2.1 Laplace Operator 19
2.2.2 Helmholtz Operator 20
2.2.3 Biharmonic Operator 24
2.3 Transient Operator 25
2.3.1 Heat Conduction Operator 25
2.3.2 Schr?dinger Operator 26
2.3.3 Wave Operator 27
2.4 Matrix Operator 28
2.4.1 Steady-State Navier Operator 29
2.4.2 Harmonic Navier Operator 33
2.4.3 Steady-State Stokes Operator 37
2.4.4 Steady-State Oseen Operator 40
References 43
Chapter 3 Boundary Value Problems of the Laplace Equation 44
3.1 Function Spaces 44
3.1.1 Continuous and Continuously Differential Function Spaces 44
3.1.2 H?lder Spaces 45
3.1.3 The Spaces 46
3.1.4 Sobolev Spaces 47
3.2 The Dirichlet and Neumann Problems of the Laplace Equation 49
3.2.1 Classical Solutions 50
3.2.2 Generalized Solutions and Variational Problems 52
3.3 Single Layer and Double Layer Potentials 54
3.3.1 Weakly Singular Integral Operators on 55
3.3.2 Double Layer Potentials 56
3.3.3 Single Layer Potentials 62
3.3.4 The Derivatives of Single Layer Potentials 64
3.3.5 The Derivatives of Double Layer Potentials 67
3.3.6 The Single and Double Layer Potentials in Sobolev Spaces 70
3.4 Boundary Reduction 73
3.4.1 Boundary Integral (Integro-Differential) Equations of the First Kind 73
3.4.2 Solvability of First Kind Integral Equation with n=2 and the Degenerate
Scale 79
3.4.3 Boundary Integral Equations of the Second Kind 84
References 93
Chapter 4 Boundary Value Problems of Modified Helmholtz Equation 95
4.1 The Dirichlet and Neumann Boundary Problems of Modified Helmholtz Equation 95
4.2 Single and Double Layer Potentials of Modified Helmholtz
Operator for the Continuous Densities 98
4.3 Single Layer Potential and Double Layer Potential
in Soblov Spaces 106
4.4 Boundary Reduction for the Boundary Value Problems of Modified
Helmholtz Equation 115
4.4.1 Boundary Integral Equation and Integro-Differential Equation of
the First Kind 115
4.4.2 Boundary Integral Equations of the Second Kind 118
References 125
Chapter 5 Boundary Value Problems of Helmholtz Equation 127
5.1 Interior and Exterior Boundary Value Problems of Helmholtz Equation 128
5.2 Single and Double Layers Potentials of Helmholtz Equation 133
5.2.1 Single Layer Potential 136
5.2.2 The Double Layer Potential 142
5.3 Boundary Reduction for the Principal Boundary Value Problems
of Helmholtz Equation 149
5.3.1 Boundary Integral Equation of the First Kind 151
5.3.2 Boundary Integro-Differential Equations of the First Kind 156
5.3.3 Boundary Integral Equations of the Second Kind 162
5.3.4 Modified Integral and Integro-Differential Equations 176
5.4 The Boundary Integro-Differential Equation Method for Interior
Dirichlet and Neumann Eigenvalue Problems of Laplace Operator 179
5.4.1 Interior Dirichlet Eigenvalue Problems of Laplace Operator 179
5.4.2 Interior Neuamann Eigenvalue Problem of Laplace Operator 182
References 185
Chapter 6 Boundary Value Problems of the Navier Equations 186
6.1 Some Basic Boundary Value Problems 186
6.2 Single and Double Layer Potentials of the Navier System 191
6.2.1 Single Layer Potential 191
6.2.2 Double Layer Potential 192
6.2.3 The Derivatives of the Single Layer Potential 195
6.2.4 The Derivatives of the Double Layer Potential 197
6.2.5 The Layer Potentials and in Sobolev Spaces 202
6.3 Boundary Reduction for the Boundary Value Problems of the Navier System 204
6.3.1 First Kind Integral (Differential-integro-differential) Equations of
the Boundary Value Problems of the Navier System 205
6.3.2 Solvability of the First Kind Integral Equations with n = 2 and
the Degenerate Scales 212
6.3.3 The Second Kind Integral Equations of the Boundary Value
Problems of the Navier System 218
References 225
Chapter 7 Boundary Value Problems of the Stokes Equations 227
7.1 Principal Boundary Value Problems of Stokes equations 227
7.2 Single Layer Potential and Double Layer Potential of Stokes Operator 234
7.3 Boudary Reduction of the Boundary Value Problems of Stokes Equations 243
References 247
Chapter 8 Some Nonlinear Problems 248
8.1 Heat Radiation Problems 248
8.1.1 Boundary Condition of Nonlinear Boundary Problem (8.1.1) 249
8.1.2 Equivalent Formula of Problem (8.1.1) 250
8.1.3 Equivalent Saddle-point Problem 255
8.1.4 The Numerical Solutions of Nonlinear Boundary
Variational Problem (8.1.17) 257
8.2 Variational Inequality (I)-Laplace Equation with Unilateral
Boundary Conditions 259
8.2.1 Equivalent Boundary Variational Inequality of Problem (8.2.2) 260
8.2.2 Abstract Error Estimate of the Numerical Solution of
Boundary Variational Inequality (8.2.9) 262
8.3 Variational Inequality (II)-Signorini Problems in Linear Elasticity 264
8.3.1 Signorini Problems in Linear Elasticity 264
8.3.2 An Equivalent Boundary Variational Inequality of Problem (8.3.3) 265
8.4 Steklov Eigenvalue Problems 268
8.4.1 The Boundary Reduction of Steklov Eigenvalue Problem 270
8.4.2 The Numerical Solutions of Steklov Eigenvalue Problem Based
on the Variational Form (8.4.13) 272
8.4.3 The Error Estimate of Numerical Solution of Steklov
Eigenvalue Problem 273
References 282
Chapter 9 Coercive and Symmetrical Coupling Methods of Finite
Element Method and Boundary Element Method 285
9.1 Exterior Dirichelet Problem of Poisson's Equation (I) 286
9.1.1 The Symmetric and Coercive Coupling Formula of Problem (9.1.1) 286
9.1.2 The Numerical Solutions of Problem (9.1.1) Based on the
Symmetric and Coercive Coupling Formula 291
9.2 Exterior Dirichlet Problem of Poisson Equation (II) 292
9.3 An Exterior Displacement Problem of Nonhomogeneous Navier System 298
9.3.1 The Coercive and Symmetrical Variational Formulation
of Problem (9.3.1) on Bounded Domain 298
9.3.2 The Discrete Approximation of Problem (9.3.19) and (9.3.20) 303
References 304
展開全部

邊界積分-微分方程方法的數學基礎(英文版) 作者簡介

韓厚德,清華大學教授,長期從事計算數學研究工作。在有限元方法、無限元方法、邊界元方法以及無界區域上偏微分方程的數值解等領域取得了一系列的重要研究成果。曾獲得國家科學大會獎(1978),國家二等獎(1988)和一等獎(1995),北京市科技進步二等獎(2002),Hermker獎(2008),國家自然科學二等獎(2008)等多項獎勵。 殷東生,清華大學副教授,主要研究方向為高頻波、無界域上的偏微分方程和分數階微分方程。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 这里精品 | 日本三级理论久久人妻电影 | 久久视频6免费观看视频精品 | 真性中出| 国内露脸少妇精品视频 | 亚洲欧美人成人让影院 | 国产精品成人免费视频网站京东 | 久久久精品中文字幕麻豆发布 | 国产裸模视频免费区无码 | 久久躁狠狠躁夜夜av | 成年女人18级毛片毛片免费 | 精品视频免费播放 | 大伊香蕉在线精品视频75 | 福利视频在线 | 亚洲国产精品久久久久秋霞 | 色综合久久久久久久久五月 | 欧美末成年videos丨 | 久久精品99久久香蕉国产 | 亚洲av成人无码一区无广告 | 777久久婷婷成人综合色 | 国产高清精品久久久久久久 | 欧美老熟妇乱xxxxx | 日韩去日本高清在线 | 欧美成人免费在线视频 | 久久99亚洲精品久久久久99 | 日韩国产在线播放 | 天天躁狠狠躁狠狠躁夜夜躁 | 中国一级特黄真人毛片免 | 欧美一级毛片片aa视频 | 秋霞电影网午夜鲁丝片无码 | 色偷偷av亚洲男人的天堂 | 欧美精品成人一区二区在线观看 | 午夜快播 | 国产精品久久久久久久伊一 | 美日韩中文字幕 | 天天天天添天天拍天天谢 | 国产精品成人第一区 | 国产精品福利片免费看 | 三级在线免费观看 | 亚洲av无码一区二区三区性色 | 久久午夜夜伦鲁鲁片免费无码 |