三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >>
普林斯頓微積分讀本-(修訂版)

包郵 普林斯頓微積分讀本-(修訂版)

出版社:人民郵電出版社出版時間:2016-10-01
開本: 32開 頁數: 648
讀者評分:5分8條評論
本類榜單:自然科學銷量榜
中 圖 價:¥65.3(6.6折) 定價  ¥99.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

普林斯頓微積分讀本-(修訂版) 版權信息

  • ISBN:9787115435590
  • 條形碼:9787115435590 ; 978-7-115-43559-0
  • 裝幀:暫無
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>>

普林斯頓微積分讀本-(修訂版) 本書特色

本書是作者多年來給普林斯頓大學本科一年級學生開設微積分的每周復習課。本書專注于講述解題技巧,目的是幫助讀者學習一元微積分的主要概念。深入處理一些基本內容,還復習一些主題。本書不僅可以作為參考書,也可以作為教材,定會成為任何一位需要微積分知識人學習一元微積分的非常好的指導書。

普林斯頓微積分讀本-(修訂版) 內容簡介

對于大多數學生來說,微積分或許是他們曾經上過的倍感迷茫且*受挫折的一門課程了. 而本書,不僅讓學生們能有效地學習微積分,更重要的是提供了戰勝微積分的**工具. 這本經典著作源于風靡美國普林斯頓大學的阿德里安·班納教授的微積分復習課程,將易用性與可讀性以及內容的深度與數學的嚴謹完美地結合在了一起,激勵學生不再懼怕微積分,并在考試中獲得高分。 作者阿德里安·班納是美國普林斯頓大學的著名數學教授,并擔任新技術研究中心主任. Adrian Banner教授的授課風格是非正式的、有吸引力并完全不強求的,甚至在不失其詳盡性的基礎上又增添了許多娛樂性,而且他不會跳過討論一個問題的任何步驟. 作者獨創的“內心獨白”方式——即問題求解過程中學生們應遵循的思考過程——為我們提供了不可或缺的推理過程以及求解方案.本書的重點在于創建問題求解的技巧.其中涉及的例題從簡單到復雜并對微積分理論進行了深入探討.讀者會在非正式的對話語境中體會微積分的無窮魅力.

普林斯頓微積分讀本-(修訂版) 目錄

第1章 函數、圖像和直線  1
1.1 函數  1
1.1.1 區間表示法  3
1.1.2 求定義域  3
1.1.3 利用圖像求值域  4
1.1.4 垂線檢驗  5
1.2 反函數  6
1.2.1 水平線檢驗  7
1.2.2 求反函數  8
1.2.3 限制定義域  8
1.2.4 反函數的反函數  9
1.3 函數的復合  10
1.4 奇函數和偶函數  12
1.5 線性函數的圖像  14第1章 函數、圖像和直線  1 1.1 函數  1 1.1.1 區間表示法  3 1.1.2 求定義域  3 1.1.3 利用圖像求值域  4 1.1.4 垂線檢驗  5 1.2 反函數  6 1.2.1 水平線檢驗  7 1.2.2 求反函數  8 1.2.3 限制定義域  8 1.2.4 反函數的反函數  9 1.3 函數的復合  10 1.4 奇函數和偶函數  12 1.5 線性函數的圖像  14 1.6 常見函數及其圖像  16 第2章 三角學回顧  21 2.1 基本知識  21 2.2 擴展三角函數定義域  23 2.2.1 ASTC 方法  25 2.2.2 [0; 2π] 以外的三角函數  27 2.3 三角函數的圖像  29 2.4 三角恒等式  32 第3章 極限導論  34 3.1 極限:基本思想  34 3.2 左極限與右極限  36 3.3 何時不存在極限  37 3.4 在∞ 和-∞ 處的極限  38 3.5 關于漸近線的兩個常見誤解  41 3.6 三明治定理  43 3.7 極限的基本類型小結  45 第4章 求解多項式的極限問題  47 4.1 x → a 時的有理函數的極限  47 4.2 x → a 時的平方根的極限  50 4.3 x → ∞ 時的有理函數的極限  51 4.4 x → ∞ 時的多項式型函數的極限  56 4.5 x → -∞ 時的有理函數的極限  59 4.6 包含絕對值的函數的極限  61 第5章 連續性和可導性  63 5.1 連續性  63 5.1.1 在一點處連續  63 5.1.2 在一個區間上連續  64 5.1.3 連續函數的一些例子  65 5.1.4 介值定理  67 5.1.5 一個更難的介值定理例子  69 5.1.6 連續函數的*大值和*小值  70 5.2 可導性  71 5.2.1 平均速率  72 5.2.2 位移和速度  72 5.2.3 瞬時速度  73 5.2.4 速度的圖像闡釋  74 5.2.5 切線  75 5.2.6 導函數  77 5.2.7 作為極限比的導數  78 5.2.8 線性函數的導數  80 5.2.9 二階導數和更高階導數  80 5.2.10 何時導數不存在  81 5.2.11 可導性和連續性  82 第6章 求解微分問題  84 6.1 使用定義求導  84 6.2 用更好的辦法求導  87 6.2.1 函數的常數倍  88 6.2.2 函數和與函數差  88 6.2.3 通過乘積法則求積函數的導數  88 6.2.4 通過商法則求商函數的導數  90 6.2.5 通過鏈式求導法則求復合函數的導數  91 6.2.6 那個難以處理的例子  94 6.2.7 乘積法則和鏈式求導法則的理由  96 6.3 求切線方程  98 6.4 速度和加速度  99 6.5 導數偽裝的極限  101 6.6 分段函數的導數  103 6.7 直接畫出導函數的圖像  106 第7章 三角函數的極限和導數  111 7.1 三角函數的極限  111 7.1.1 小數的情況  111 7.1.2 問題的求解——小數的情況  113 7.1.3 大數的情況  117 7.1.4 “其他的” 情況  120 7.1.5 一個重要極限的證明  121 7.2 三角函數的導數  124 7.2.1 求三角函數導數的例子  127 7.2.2 簡諧運動  128 7.2.3 一個有趣的函數  129 第8章 隱函數求導和相關變化率  132 8.1 隱函數求導  132 8.1.1 技巧和例子  133 8.1.2 隱函數求二階導  137 8.2 相關變化率  138 8.2.1 一個簡單的例子  139 8.2.2 一個稍難的例子  141 8.2.3 一個更難的例子  142 8.2.4 一個非常難的例子  144 第9章 指數函數和對數函數  148 9.1 基礎知識  148 9.1.1 指數函數的回顧  148 9.1.2 對數函數的回顧  149 9.1.3 對數函數、指數函數及反函數  150 9.1.4 對數法則  151 9.2 e 的定義  153 9.2.1 一個有關復利的問題  153 9.2.2 問題的答案  154 9.2.3 更多關于e 和對數函數的內容  156 9.3 對數函數和指數函數求導  158 9.4 求解指數函數或對數函數的極限  161 9.4.1 涉及e 的定義的極限  161 9.4.2 指數函數在0 附近的行為  162 9.4.3 對數函數在1 附近的行為  164 9.4.4 指數函數在∞ 或-∞ 附近的行為  164 9.4.5 對數函數在∞附近的行為  167 9.4.6 對數函數在0 附近的行為  168 9.5 取對數求導法  169 9.6 指數增長和指數衰變  173 9.6.1 指數增長  174 9.6.2 指數衰變  176 9.7 雙曲函數  178 第10章 反函數和反三角函數  181 10.1 導數和反函數  181 10.1.1 使用導數證明反函數存在  181 10.1.2 導數和反函數:可能出現的問題  182 10.1.3 求反函數的導數  183 10.1.4 一個綜合性例子  185 10.2 反三角函數  187 10.2.1 反正弦函數  187 10.2.2 反余弦函數  190 10.2.3 反正切函數  192 10.2.4 反正割函數  194 10.2.5 反余割函數和反余切函數  195 10.2.6 計算反三角函數  196 10.3 反雙曲函數  199 第11章 導數和圖像  202 11.1 函數的極值  202 11.1.1 全局極值和局部極值  202 11.1.2 極值定理  203 11.1.3 求全局*大值和*小值  204 11.2 羅爾定理  206 11.3 中值定理  209 11.4 二階導數和圖像  212 11.5 對導數為零點的分類  215 11.5.1 使用一次導數  215 11.5.2 使用二階導數  217 第12章 繪制函數圖像  219 12.1 建立符號表格  219 12.1.1 建立一階導數的符號表格  221 12.1.2 建立二階導數的符號表格  222 12.2 繪制函數圖像的全面方法  224 12.3 例題  225 12.3.1 一個不使用導數的例子  225 12.3.2 完整的方法:例一  227 12.3.3 完整的方法:例二  229 12.3.4 完整的方法:例三  231 12.3.5 完整的方法:例四  234 第13章 *優化和線性化  239 13.1 *優化  239 13.1.1 一個簡單的*優化例子  239 13.1.2 *優化問題:一般方法  240 13.1.3 一個*優化的例子  241 13.1.4 另一個*優化的例子  242 13.1.5 在*優化問題中使用隱函數求導  246 13.1.6 一個較難的*優化例子  246 13.2 線性化  249 13.2.1 線性化問題:一般方法  251 13.2.2 微分  252 13.2.3 線性化的總結和例子  254 13.2.4 近似中的誤差  256 13.3 牛頓法  258 第14章 洛必達法則及極限問題總結  263 14.1 洛必達法則  263 14.1.1 類型A:0/0   263 14.1.2 類型A:±∞/ ±∞   266 14.1.3 類型B1: (∞-∞)   267 14.1.4 類型B2: (0 ×±∞)   269 14.1.5 類型C:?(1±∞, 0º 或∞º)  270 14.1.6 洛必達法則類型的總結  272 14.2 關于極限的總結  273 第15章 積分  276 15.1 求和符號  276 15.1.1 一個有用的求和  279 15.1.2 伸縮求和法  280 15.2 位移和面積  283 15.2.1 三個簡單的例子  283 15.2.2 一段更常規的旅行  285 15.2.3 有向面積  287 15.2.4 連續的速度  288 15.2.5 兩個特別的估算  291 第16章 定積分  293 16.1 基本思想  293 16.2 定積分的定義  297 16.3 定積分的性質  301 16.4 求面積  305 16.4.1 求通常的面積  306 16.4.2 求解兩條曲線之間的面積  308 16.4.3 求曲線與y 軸所圍成的面積  310 16.5 估算積分  313 16.6 積分的平均值和中值定理  316 16.7 不可積的函數  319 第17章 微積分基本定理  321 17.1 用其他函數的積分來表示的函數  321 17.2 微積分的**基本定理  324 17.3 微積分的第二基本定理  328 17.4 不定積分  329 17.5 怎樣解決問題:微積分的**基本定理  331 17.5.1 變形1:變量是積分下限  332 17.5.2 變形2:積分上限是一個函數  332 17.5.3 變形3:積分上下限都為函數  334 17.5.4 變形4:極限偽裝成導數  335 17.6 怎樣解決問題:微積分的第二基本定理  336 17.6.1 計算不定積分  336 17.6.2 計算定積分  339 17.6.3 面積和絕對值  341 17.7 技術要點  344 17.8 微積分**基本定理的證明  345 第18章 積分的方法I  347 18.1 換元法  347 18.1.1 換元法和定積分  350 18.1.2 如何換元  353 18.1.3 換元法的理論解釋  355 18.2 分部積分法  356 18.3 部分分式  361 18.3.1 部分分式的代數運算  361 18.3.2 對每一部分積分  365 18.3.3 方法和一個完整的例子  367 第19章 積分的方法II   373 19.1 應用三角恒等式的積分  373 19.2 關于三角函數的冪的積分  376 19.2.1 sin 或cos 的冪  376 19.2.2 tan 的冪  378 19.2.3 sec 的冪  379 19.2.4 cot 的冪  381 19.2.5 csc 的冪  382 19.2.6 約化公式  382 19.3 關于三角換元法的積分  384 19.3.1 類型1:  384 19.3.2 類型2:  386 19.3.3 類型3:  387 19.3.4 配方和三角換元法  388 19.3.5 關于三角換元法的總結  389 19.3.6 平方根的方法和三角換元法  389 19.4 積分技巧總結  391 第20章 反常積分:基本概念  393 20.1 收斂和發散  393 20.1.1 反常積分的一些例子  395 20.1.2 其他破裂點  397 20.2 關于無窮區間上的積分  398 20.3 比較判別法(理論)  400 20.4 極限比較判別法(理論)  402 20.4.1 函數互為漸近線  402 20.4.2 關于判別法的陳述  404 20.5 p 判別法(理論)   405 20.6 絕對收斂判別法  407 第21章 反常積分:如何解題  410 21.1 如何開始  410 21.1.1 拆分積分  410 21.1.2 如何處理負函數值  411 21.2 積分判別法總結  413 21.3 常見函數在∞ 和-∞附近的表現  414 21.3.1 多項式和多項式型函數在1 和?1 附近的表現  415 21.3.2 三角函數在∞ 和-∞ 附近的表現  417 21.3.3 指數在∞和-∞附近的表現  419 21.3.4 對數在∞ 附近的表現  422 21.4 常見函數在0 附近的表現  426 21.4.1 多項式和多項式型函數在0 附近的表現  426 21.4.2 三角函數在0 附近的表現  427 21.4.3 指數函數在0 附近的表現  429 21.4.4 對數函數在0 附近的表現  430 21.4.5 更一般的函數在0 附近的表現  431 21.5 如何應對不在0 或∞ 處的瑕點  432 第22章 數列和級數:基本概念  434 22.1 數列的收斂和發散  434 22.1.1 數列和函數的聯系  435 22.1.2 兩個重要數列  436 22.2 級數的收斂與發散  438 22.3 第n 項判別法(理論)   442 22.4 無窮級數和反常積分的性質  443 22.4.1 比較判別法(理論)   443 22.4.2 極限比較判別法(理論)   444 22.4.3 ρ 判別法(理論)  444 22.4.4 絕對收斂判別法  445 22.5 級數的新判別法  447 22.5.1 比式判別法(理論)   447 22.5.2 根式判別法(理論)   449 22.5.3 積分判別法(理論)   450 22.5.4 交錯級數判別法(理論)   453 第23章 求解級數問題  455 23.1 求幾何級數的值  455 23.2 應用第n 項判別法  457 23.3 應用比式判別法  457 23.4 應用根式判別法  461 23.5 應用積分判別法  462 23.6 應用比較判別法、極限比較判別法和p 判別法  463 23.7 應對含負項的級數  468 第24章 泰勒多項式、泰勒級數和冪級數導論  472 24.1 近似值和泰勒多項式  472 24.1.1 重訪線性化  472 24.1.2 二次近似  473 24.1.3 高階近似  474 24.1.4 泰勒定理  475 24.2 冪級數和泰勒級數  478 24.2.1 一般冪級數  479 24.2.2 泰勒級數和麥克勞林級數  481 24.2.3 泰勒級數的收斂性  481 24.3 一個有用的極限  485 第25章 求解估算問題  487 25.1 泰勒多項式與泰勒級數總結  487 25.2 求泰勒多項式與泰勒級數  488 25.3 用誤差項估算問題  491 25.3.1 **個例子  492 25.3.2 第二個例子  494 25.3.3 第三個例子  495 25.3.4 第四個例子  496 25.3.5 第五個例子  497 25.3.6 誤差項估算的一般方法  499 25.4 誤差估算的另一種方法  499 第26章 泰勒級數和冪級數:如何解題  502 26.1 冪級數的收斂性  502 26.1.1 收斂半徑  502 26.1.2 求收斂半徑和收斂區域  504 26.2 合成新的泰勒級數  508 26.2.1 代換和泰勒級數  509 26.2.2 泰勒級數求導  511 26.2.3 泰勒級數求積分  512 26.2.4 泰勒級數相加和相減  514 26.2.5 泰勒級數相乘  515 26.2.6 泰勒級數相除  516 26.3 利用冪級數和泰勒級數求導  517 26.4 利用麥克勞林級數求極限  519 第27章 參數方程和極坐標  523 27.1 參數方程  523 27.2 極坐標  528 27.2.1 極坐標與笛卡兒坐標互換  529 27.2.2 極坐標系中畫曲線  530 27.2.3 求極坐標曲線的切線  534 27.2.4 求極坐標曲線圍成的面積  535 第28章 復數  538 28.1 基礎  538 28.2 復平面  541 28.3 復數的高次冪  544 28.4 解 w   545 28.5 解 = w   550 28.6 一些三角級數  552 28.7 歐拉恒等式和冪級數  554 第29章 體積、弧長和表面積  556 29.1 旋轉體的體積  556 29.1.1 圓盤法  557 29.1.2 殼法  558 29.1.3 總結和變式  560 29.1.4 變式1:區域在曲線和y 軸之間  561 29.1.5 變式2:兩曲線間的區域  562 29.1.6 變式3:繞平行于坐標軸的軸旋轉  565 29.2 一般立體體積  567 29.3 弧長  571 29.4 旋轉體的表面積  574 第30章 微分方程  578 30.1 微分方程導論  578 30.2 可分離變量的一階微分方程  579 30.3 一階線性方程  581 30.4 常系數微分方程  585 30.4.1 解一階齊次方程  586 30.4.2 解二階齊次方程  586 30.4.3 為什么特征二次方程適用  587 30.4.4 非齊次方程和特解  588 30.4.5 求特解  589 30.4.6 求特解的例子  590 30.4.7 解決yP 和yH 間的沖突  592 30.4.8 IVP   593 30.5 微分方程建模  595 附錄A 極限及其證明  598 A.1 極限的正式定義  598 A.2 由原極限產生新極限  602 A.3 極限的其他情形  606 A.4 連續與極限  611 A.5 再談指數函數和對數函數  616 A.6 微分與極限  618 A.7 泰勒近似定理的證明  627 附錄B 估算積分  629 B.1 使用條紋估算積分  629 B.2 梯形法則  632 B.3 辛普森法則  634 B.4 近似的誤差  636 符號列表  640 索引  643信息
展開全部

普林斯頓微積分讀本-(修訂版) 作者簡介

阿德里安·班納(Adrian Banner) 澳大利亞新南威爾士大學數學學士及碩士,普里斯頓大學數學博士。2002年起任職于INTECH公司,現為INTECH公司首席執行官兼首席投資官。同時,他在普林斯頓大學教學數學系任兼職教師。

商品評論(8條)
  • 主題:

    很喜歡外國人的書,思維就是更通暢。

    2023/8/1 18:54:43
    讀者:m28***(購買過本書)
  • 主題:是一本高數著作

    本書可以說和國內的教材完全不同,國內教材更多的是直接告訴你定理是什么,而本書會較為詳細的告訴你如何推出。大白話式的語言讓該書能夠比較輕松的理解。

    2023/3/22 23:03:47
    讀者:ztw***(購買過本書)
  • 主題:

    我愛數學!我愛數學!我愛數學!

    2023/2/8 21:45:26
  • 主題:

    好好好好好

    2020/11/19 23:24:05
    讀者:ztw***(購買過本書)
  • 主題:

    還沒看,雖然沒了塑封皮,但是外觀方面沒有問題

    2020/9/10 15:46:16
    讀者:MaG***(購買過本書)
  • 主題:微積分寫的很經典,值得擁有

    內容很詳細,適合自學入門的教材。

    2019/9/22 12:52:06
    讀者:lgq***(購買過本書)
  • 主題:

    用來學習微積分的,希望能有所幫助

    2018/10/25 7:09:33
    讀者:ztw***(購買過本書)
  • 主題:非常系統的參考書

    學好數學,做題必不可少,這是一本比較好的參考書

    2018/10/11 12:35:33
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6
欧美国产国产综合| 欧美三级一区二区| 91麻豆蜜桃| 99re国产在线播放| 成人三级在线| 欧美第一黄网| 色综合中文字幕| 欧美这里有精品| 91精品国产综合久久久久久漫画| 91精品国产综合久久久蜜臀图片| 日韩一级视频免费观看在线| 久久久精品日韩欧美| 国产精品高潮呻吟久久| 亚洲一区成人在线| 国产在线精品一区二区三区不卡| 成人av免费网站| 国产日韩二区| 自拍偷拍一区二区三区| 欧美日本不卡视频| 久久精品亚洲麻豆av一区二区| 亚洲欧美一区二区久久| 日本美女视频一区二区| 成人国产视频在线观看| 欧美黑人xxxxx| 欧美日韩在线一区二区| 国产亚洲欧美中文| 亚洲午夜一区二区| 国产a区久久久| 国精产品一区二区| 欧美日韩亚洲综合一区二区三区 | 欧美日韩一区三区| 欧美变态凌虐bdsm| 亚洲激情男女视频| 国产伦精品一区二区三区视频青涩 | 欧美二区乱c少妇| 国产性色一区二区| 亚洲午夜精品一区二区三区他趣| 91精品国产综合久久久久久久久久| 精品久久一二三区| 亚洲国产精品视频| 成人av影视在线观看| 午夜精品一区二区三区四区| 91精品国产品国语在线不卡| 亚洲丝袜精品丝袜在线| 国产精品一区二区视频| 精品欧美国产| 91精品蜜臀在线一区尤物| 亚洲欧洲另类国产综合| 国产乱码一区二区三区| 麻豆精品传媒视频| 精品日韩99亚洲| 日韩和欧美一区二区| 91麻豆蜜桃一区二区三区| 99热99精品| 亚洲精品在线视频观看| 国产日产欧产精品推荐色| 亚洲欧美日韩国产成人精品影院| 91九色蝌蚪成人| 26uuu精品一区二区在线观看| av色综合久久天堂av综合| 日本精品国语自产拍在线观看| 国产精品污网站| 国产精品播放| 136国产福利精品导航| 99视频在线播放| 欧美一级精品大片| 日韩电影在线免费看| 在线精品亚洲一区二区| 亚洲男人电影天堂| 日本高清一区| 亚洲黄色免费网站| 欧美电视剧在线看免费| 国模一区二区三区白浆| 国产日韩欧美在线一区| 欧美精品v日韩精品v国产精品| 亚洲欧洲精品一区二区精品久久久| 在线观看免费成人| 成人国产精品视频| 精品一区二区三区蜜桃| 亚洲成av人片在线观看无码| 久久精品夜色噜噜亚洲aⅴ| 成人综合婷婷国产精品久久蜜臀| 色呦呦国产精品| 成人av资源在线| 亚洲另类春色校园小说| 欧美午夜电影一区| 久久精品magnetxturnbtih| 三级一区在线视频先锋| 国产欧美日韩中文久久| 中文字幕一区二区中文字幕| 9a蜜桃久久久久久免费| 五月综合激情婷婷六月色窝| 在线观看免费一区| 国产区日韩欧美| 国产69精品久久99不卡| 国产精品水嫩水嫩| 欧美日韩国产精品成人| 精品一区久久久| 91美女精品福利| 韩国欧美一区二区| 亚洲成av人影院| 亚洲欧洲日产国产综合网| 制服丝袜亚洲网站| 色老汉av一区二区三区| 精品福利影视| 国产成人高清在线| 免费成人美女在线观看.| 日韩一区二区三区观看| 色婷婷综合视频在线观看| 欧美日韩国产一二| 国内一区在线| 国产 高清 精品 在线 a| 成人av电影在线网| 成人av资源网站| 丁香天五香天堂综合| 经典三级一区二区| 免费av网站大全久久| 蜜臀久久久久久久| 蜜桃免费网站一区二区三区| 日韩高清欧美激情| 美日韩黄色大片| 裸体一区二区三区| 欧美人妖巨大在线| 麻豆久久久9性大片| 美女黄毛**国产精品啪啪| 久久综合福利| 亚洲欧洲精品在线| 91官网在线观看| 欧美日韩一区二区三区不卡| 91国产免费看| 欧美sm美女调教| 26uuu亚洲综合色| 国产精品久久久久久户外露出| 国产精品久久久久久久久免费相片| 国产人成亚洲第一网站在线播放 | 一区二区日本伦理| 欧美日韩在线免费视频| 色婷婷国产精品综合在线观看| 欧美亚洲国产一区二区三区va | 成a人片国产精品| 国产欧美丝袜| 欧亚一区二区三区| 久久老女人爱爱| 午夜精品视频一区| 大桥未久av一区二区三区中文| 国产91精品一区二区绿帽| 日韩三级电影| 国产日韩欧美综合在线| 亚洲色图制服丝袜| 国内成人精品2018免费看| 国产区日韩欧美| 欧美怡红院视频| 亚洲视频一区二区免费在线观看| 久久99精品国产.久久久久| www久久99| 日韩欧美国产高清| 国产伦理一区二区三区| 欧美日本在线播放| 午夜精品在线看| 91在线视频播放地址| 欧美色综合影院| 亚洲午夜一二三区视频| 成人激情免费电影网址| 亚洲精品国产精品久久| 亚洲柠檬福利资源导航| 日韩av午夜在线观看| 欧美伦理一区二区| 国产精品毛片大码女人 | 欧美国产一区在线| 成人av在线播放网址| 欧美欧美午夜aⅴ在线观看| 无码av免费一区二区三区试看 | 日本亚洲免费观看| 日韩欧美三级电影| 伊人开心综合网| 91色九色蝌蚪| 国产片一区二区三区| 激情五月播播久久久精品| 色综合视频在线观看| 天天操天天干天天综合网| 一区不卡视频| 蜜臀av一区二区| 欧美军同video69gay| 高清在线不卡av| 国产亚洲精品超碰| 久久本道综合色狠狠五月| 亚洲女与黑人做爰| 裸模一区二区三区免费| 婷婷成人激情在线网| 欧美性高清videossexo| 高清在线观看日韩| 国产精品电影一区二区| 日本不卡在线观看| 美国欧美日韩国产在线播放| 美女视频网站黄色亚洲| 涩涩涩999| 高清在线成人网| 国产精品美女久久久久久久| 亚洲二区自拍| 国内外成人在线|