三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6

讀書月攻略拿走直接抄!
歡迎光臨中圖網(wǎng) 請 | 注冊
> >
高效分子離子傳遞膜(英文版)

包郵 高效分子離子傳遞膜(英文版)

出版社:科學(xué)出版社出版時間:2023-03-01
開本: B5 頁數(shù): 312
中 圖 價:¥120.0(7.5折) 定價  ¥160.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

高效分子離子傳遞膜(英文版) 版權(quán)信息

  • ISBN:9787030748867
  • 條形碼:9787030748867 ; 978-7-03-074886-7
  • 裝幀:一般膠版紙
  • 冊數(shù):暫無
  • 重量:暫無
  • 所屬分類:>

高效分子離子傳遞膜(英文版) 內(nèi)容簡介

本書結(jié)合作者團隊的近期新研究成果,重點介紹了有機-無機復(fù)合膜和二維層狀膜在有機溶劑納濾、氫燃料電池、鋰-硫電池中的應(yīng)用,分析了分子和離子級分離膜技術(shù)與膜過程領(lǐng)域的發(fā)展現(xiàn)狀、存在問題及優(yōu)化方法,提出了膜過程中離子/分子級分離與傳遞過程強化的策略。本書的出版將對改善該學(xué)科的知識體系,明確該學(xué)科前言研究現(xiàn)狀與進展,促進膜分離技術(shù)與膜過程領(lǐng)域的發(fā)展具有積極意義。同時,本書也可為該領(lǐng)域的研究人員和工程師提供新的技術(shù)研發(fā)思路。

高效分子離子傳遞膜(英文版) 目錄

Contents
1 Introduction to Membrane 1
Jingtao Wang and Wenjia Wu
2 Composite Membrane for Organic Solvent Nanofiltration 7
Wenpeng Li, Shiyuan Liu, and Jingjing Chen
3 Lamellar Membrane for Organic Solvent Nanofiltration 65
Xiaoli Wu, Yifan Li, and Jingtao Wang
4 Composite Proton Exchange Membrane for Hydrogen Fuel Cell 103
Guoli Zhou, Jingchuan Dang, and Jingtao Wang
5 Lamellar and Nanofiber-Based Proton Exchange Membranesfor Hydrogen Fuel Cell 167
Jianlong Lin, Wenjia Wu, and Jingtao Wang
6 Composite Separator or Electrolyte for Lithium-Sulfur Battery 219
Weijie Kou, Jiajia Huang, and Wenjia Wu
7 Composite Electrolyte for All-Solid-State Lithium Battery 253
Jie Zhang, Yafang Zhang, and Jingtao Wang
展開全部

高效分子離子傳遞膜(英文版) 節(jié)選

Chapter 1 Introduction to Membrane Jingtao Wang and Wenjia Wu In the past decades, membrane technology has been widely utilized in various separation processes, because of their low-energy consumption, low-cost, reliability, and scalability when compared with conventional separation processes like distillation, extraction, or crystallization [1,2]. In order to further increase the competitiveness, intensive efforts have been made from improving the separation efficiency of existing membrane processes to exploring new applications. As the core part, membrane materials with high permeability, high selectivity, and high stability are extremely desired since they can significantly accelerate the practical application of membrane technology [3, 4]. To date, plenty of membranes with different pore sizes have been developed, such as polymer membrane, ceramic membrane, two-dimensional (2D) lamellar membrane, molecule sieving membrane, hybrid membrane, and composite membrane [5-10]. These membranes have been widely used for different separation processes including, microfiltration, ultrafiltration, nanofiltration, reverse osmosis, gas separation, and proton/ion conduction, etc. [11, 12]. For each category of membrane, the physical and chemical environments of transfer channels are of great importance in manipulating the comprehensive properties. The physical environments are dictated by the connectivity, tortuosity, and size of transfer channels, while the chemical environments are dictated by the type, amount, and distribution of functional groups within transfer channels [13]. Generally, ideal transfer channels should integrate the following attributes: (i) they should be short with appropriate transfer environment to endow membranes with high permeability, (ii) the channel size distribution should be narrow to endow membranes with high selectivity, and (iii) the chemical and mechanical stability should be high to endow membranes with long-term operation stability [14]. Currently, polymers are the dominant membrane materials, due to their easy processability and high scale-up capability. For conventional polymer membranes, breaking the permeability-selec-tivity or permeability-stability trade-off remains a challenge. The great progress in polymer membranes over the past decades has brought about the booming of novel kinds of structured membranes including, hybrid membrane, composite membrane, and phase-separated membrane, which push the separation performances of polymer membranes to new records [15-18]. Hybrid membrane is an intricately structured membrane configuration, owing to its merit of coupling the good flexibility and processability of polymers with the regular topological structure as well as the tunable functionality of fillers [19, 20]. Impermeable fillers such as silica particles, graphene oxide (GO) nanosheets, and organic/inorganic nanorods can induce a distortion of chain alignment to improve the free volume property or induce the construction of long-range, ordered transfer channels in membrane [21,22]. Permeable fillers such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolite can afford additional transfer pathways and mechanisms to membrane including, molecule sieving, and selective adsorption [23, 24]. Composite membrane for molecule transfer is generally a heterogeneous membrane with dense separation layer and porous support layer, where the separation layer and the support layer can be separately optimized to achieve simultaneously high separation performance and stability [25,26]. Particularly, the fabrication of composite membrane with an ultrathin separation layer is deemed as a delicate strategy to achieve highly permeable membrane, which is one of the most important pursuits for membrane technology [27, 28]. At present, researches related to composite membranes mainly focus on the precise manipulation of physical structure and chemical component of separation layer; however, these remain challenging due to the pursuit of ultrathin thickness. For proton/ion separation, electrospinning is increasingly recognized as a powerful mean for introducing unique phase-separated architectures into composite membranes [29]. Indeed, it allows the elaboration of composite membranes with a rather facile mean to control of the long-range organization/distribution/percolation ofhydrophilic and hydrophobic domains of the ionomer by adjusting the type of electrospun material, the volume fraction of nanofibers, and the experimental conditions [30]. Moreover, electrospinning can impart uniaxial alignment of polymer chains within nanofibers, resulting in enhanced mechanical properties. Importantly, it can promote the formation of interconnected transfer channels, which facilitate the improvement in proton/ion conduction [31]. In recent years, 2D nanosheets, with a thickness of one to a few atoms, have become the promising building blocks for ad

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服
三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6
欧美另类久久久品| 国产精品中出一区二区三区| 色老头久久综合| 国产精品一二三区| 日韩精品国产精品| 狠狠色狠狠色综合系列| 国产精品伊人色| 99热99精品| 精品亚洲欧美日韩| 亚洲欧美日产图| 欧美日韩国产精品成人| 欧美精品一区二区三区一线天视频 | 蜜桃av一区二区三区| 捆绑调教美女网站视频一区| 成人av在线播放网址| 久久久久久九九九九| 色网站国产精品| 久久综合久色欧美综合狠狠| 国产精品狼人久久影院观看方式| 亚洲国产一区二区视频| 国产一区二区三区精品欧美日韩一区二区三区 | 日韩欧美一区二区视频| 国产精品国产三级国产| 久久精品国产久精国产爱| 99视频在线精品| 日韩视频专区| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 国产制服丝袜一区| 国产精品播放| 91福利国产精品| 久久久久久久综合色一本| 亚洲国产一区二区视频| 成人免费毛片片v| 图片区小说区区亚洲五月| 欧美videos中文字幕| 亚洲电影视频在线| 95精品视频在线| 91福利在线免费观看| 国产精品美日韩| 国产毛片精品视频| 日韩精品成人一区二区在线观看| 日韩欧美视频在线| 日韩电影在线免费看| av成人观看| 欧美一级专区免费大片| 亚洲成av人**亚洲成av**| 成人动漫在线观看视频| 色哟哟国产精品免费观看| 国产精品久久久久久妇女6080| 国产尤物一区二区在线| 午夜欧美性电影| 国产蜜臀av在线一区二区三区| 极品少妇xxxx精品少妇| 欧美成人蜜桃| 欧美国产激情一区二区三区蜜月| 国产一区在线观看麻豆| 亚洲成人第一| 国产精品久久久久久亚洲伦| 成人av电影免费在线播放| 在线一区二区三区四区| 夜夜揉揉日日人人青青一国产精品| av一区二区三区四区| 欧美乱妇15p| 麻豆国产91在线播放| 亚洲精品8mav| 一区二区三区四区五区视频在线观看| 超碰97国产在线| 久久久无码精品亚洲日韩按摩| 国产寡妇亲子伦一区二区| 在线视频亚洲自拍| 亚洲成人tv网| 亚洲v欧美v另类v综合v日韩v| 亚洲色图色小说| 国产在线欧美日韩| xnxx国产精品| www.在线欧美| 精品国产在天天线2019| 大胆欧美人体老妇| 91精品国产综合久久精品麻豆 | 神马影院我不卡| 亚洲精品视频在线观看免费 | 亚洲精品二区| 亚洲一区二区视频在线| 欧美一区二区视频17c| 国产精品每日更新在线播放网址| 91麻豆swag| 亚洲国产成人午夜在线一区| av成人在线电影| 久久噜噜亚洲综合| www.久久爱.cn| 欧美韩国日本综合| 国产欧美日韩一区| ...xxx性欧美| 日韩精品不卡| 日韩电影在线看| 欧美图区在线视频| 国产河南妇女毛片精品久久久 | 色偷偷久久一区二区三区| 日韩精品欧美精品| 欧美日韩免费视频| 成人av影院在线| 国产欧美一区二区精品忘忧草| 国产一级特黄a大片99| 亚洲黄色免费网站| 中文字幕欧美人与畜| 久久国产综合精品| 日韩欧美高清一区| 成人三级视频在线观看一区二区| 亚洲欧洲成人精品av97| 欧美成人一区二区在线| 亚洲h在线观看| 欧美另类高清zo欧美| 91在线观看一区二区| 亚洲青青青在线视频| 尤物国产精品| 丁香另类激情小说| 中文字幕一区不卡| 日本久久一区二区| 成人手机电影网| 日韩一区有码在线| 在线观看区一区二| 99精品视频在线观看| 亚洲九九爱视频| 欧美日韩色一区| 动漫美女被爆操久久久| 午夜精品久久久久影视| 欧美一区二区三区色| 精品91免费| 捆绑调教一区二区三区| 国产色产综合产在线视频| 丝袜美腿玉足3d专区一区| 国产美女精品在线| 亚洲婷婷国产精品电影人久久| 色999日韩国产欧美一区二区| av在线不卡免费看| 亚洲bt欧美bt精品| 久久人人爽人人爽| 色偷偷成人一区二区三区91| 99久久久久久| 日韩精品一卡二卡三卡四卡无卡| 精品久久久网站| 亚洲精品中字| 99精品1区2区| 青青青伊人色综合久久| 国产欧美日韩三区| 欧美性受xxxx| 久久青青草原| 成人激情黄色小说| 午夜精品一区二区三区电影天堂| 日韩限制级电影在线观看| 日本不卡在线观看| 99精品黄色片免费大全| 老司机午夜精品| 亚洲免费av观看| 久久综合久久鬼色| 91精品1区2区| 麻豆传媒一区| av午夜精品一区二区三区| 久久精品国产精品亚洲红杏| 中文字幕制服丝袜成人av | 正在播放久久| 久久福利电影| 91在线观看下载| 国产一区二区三区在线观看精品| 亚洲免费资源在线播放| 欧美最猛性xxxxx直播| 国模精品一区二区三区| 精品视频在线免费| 亚洲欧美一区二区三区国产精品| 91精品啪在线观看国产60岁| 久久久精品动漫| 国产精品123| 蜜桃视频一区二区三区在线观看| 亚洲色图清纯唯美| 久久久久久免费毛片精品| 欧美日韩色综合| 亚洲一二三区在线| 麻豆亚洲一区| 99三级在线| 91美女蜜桃在线| 成人午夜在线播放| 国产美女在线精品| 麻豆91精品视频| 热久久久久久久| 亚洲v日本v欧美v久久精品| 亚洲你懂的在线视频| 国产精品午夜电影| 久久久精品人体av艺术| 欧美成人猛片aaaaaaa| 在线播放/欧美激情| 欧美日韩一区二区三区在线看| 色综合欧美在线视频区| 亚洲精品国产精品国自产观看| 免费久久99精品国产自| 久久久久久久久久久久久9999| 激情久久av| 欧美日韩在线高清| 欧美一区二区三区四区在线观看地址| 激情五月综合色婷婷一区二区| 国产自产在线视频一区|