国产第1页_91在线亚洲_中文字幕成人_99久久久久久_五月宗合网_久久久久国产一区二区三区四区

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >>
基于回歸視野的統計學習

包郵 基于回歸視野的統計學習

出版社:世界圖書出版公司出版時間:2018-05-01
開本: 23cm 頁數: 358頁
本類榜單:自然科學銷量榜
中 圖 價:¥24.1(3.5折) 定價  ¥68.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
溫馨提示:5折以下圖書主要為出版社尾貨,大部分為全新(有塑封/無塑封),個別圖書品相8-9成新、切口
有劃線標記、光盤等附件不全詳細品相說明>>
本類五星書更多>

基于回歸視野的統計學習 版權信息

基于回歸視野的統計學習 本書特色

《基于回歸視野的統計學習》作者是賓夕法尼亞大學數理統計系教授,研究領域廣泛,在社會科學和自然科學均有很深的造詣。本書主要闡述統計學習的應用知識,各章還有實際應用實例,可作為統計、社會科學和生命科學等相關領域的研究生和科研人員的參考書。

基于回歸視野的統計學習 內容簡介

《基于回歸視野的統計學習》作者是賓夕法尼亞大學數理統計系教授,研究領域廣泛,在社會科學和自然科學均有很深的造詣。本書主要闡述統計學習的應用知識,各章還有實際應用實例,可作為統計、社會科學和生命科學等相關領域的研究生和科研人員的參考書。

基于回歸視野的統計學習 目錄

Preface 1 Statistical Learning as a Regression Problem 1.1 Getting Started 1.2 Setting the Regression Context 1.3 The Transition to Statistical Learning 1.3.1 Some Goals of Statistical Learning 1.3.2 Statistical Inference 1.3.3 Some Initial Cautions 1.3.4 A Cartoon Illustration 1.3.5 A Taste of Things to Come 1.4 Some Initial Concepts and Definitions 1.4.1 Overall Goals 1.4.2 Loss Functions and Related Concepts 1.4.3 Linear Estimators 1.4.4 Degrees of Freedom 1.4.5 Model Evaluation 1.4.6 Model Selection 1.4.7 Basis Functions 1.5 Some Common Themes 1.6 Summary and Conclusions 2 Regression Splines and Regression Smoothers 2.1 Introduction 2.2 Regression Splines 2.2.1 Applying a Piecewise Linear Basis 2.2.2 Polynomial Regression Splines 2.2.3 Natural Cubic Splines 2.2.4 B-Splines 2.3 Penalized Smoothing 2.3.1 Shrinkage 2.3.2 Shrinkage and Statistical Inference 2.3.3 Shrinkage: So What? 2.4 Smoothing Splines 2.4.1 An Illustration 2.5 Locally Weighted Regression as a Smoother 2.5.1 Nearest Neighbor Methods 2.5.2 Locally Weighted Regression 2.6 Smoothers for Multiple Predictors 2.6.1 Smoothing in Two Dimensions 2.6.2 The Generalized Additive Model 2.7 Smoothers with Categorical Variables 2.7.1 An Illustration 2.8 Locally Adaptive Smoothers 2.9 The Role of Statistical Inference 2.9.1 Some Apparent Prerequisites 2.9.2 Confidence Intervals 2.9.3 Statistical Tests 2.9.4 Can Asymptotics Help? 2.10 Software Issues 2.11 Summary and Conclusions 3 Classification and Regression Trees (CART) 3.1 Introduction 3.2 An Overview of Recursive Partitioning with CART 3.2.1 Tree Diagrams 3.2.2 Classification and Forecasting with CART 3.2.3 Confusion Tables 3.2.4 CART as an Adaptive Nearest Neighbor Method 3.2.5 What CART Needs to Do 3.3 Splitting a Node 3.4 More on Classification 3.4.1 Fitted Values and Related Terms 3.4.2 An Example 3.5 Classification Errors and Costs 3.5.1 Default Costs in CART 3.5.2 Prior Probabilities and Costs 3.6 Pruning 3.6.1 Impurity Versus Rа(T) 3.7 Missing Data 3.7.1 Missing Data with CART 3.8 Statistical Inference with CART 3.9 Classification Versus Forecasting 3.10 Varying the Prior, Costs, and the Complexity Penalty 3.11 An Example with Three Response Categories 3.12 CART with Highly Skewed Response Distributions 3.13 Some Cautions in Interpreting CART Results 3.13.1 Model Bias 3.13.2 Model Variance 3.14 Regression Trees 3.14.1 An Illustration 3.14.2 Some Extensions 3.14.3 Multivariate Adaptive Regression Splines (MARS) 3.15 Software Issues 3.16 Summary and Conclusions 4 Bagging 4.1 Introduction 4.2 Overfitting and Cross-Validation 4.3 Bagging as an Algorithm 4.3.1 Margins 4.3.2 Out-Of-Bag Observations 4.4 Some Thinking on Why Bagging Works 4.4.1 More on Instability in CART 4.4.2 How Bagging Can Help 4.4.3 A Somewhat More Formal Explanation 4.5 Some Limitations of Bagging 4.5.1 Sometimes Bagging Does Not Help 4.5.2 Sometimes Bagging Can Make the Bias Worse 4.5.3 Sometimes Bagging Can Make the Variance Worse 4.5.4 Losing the Trees for the Forest 4.5.5 Bagging Is Only an Algorithm 4.6 An Example 4.7 Bagging a Quantitative Response Variable 4.8 Software Considerations 4.9 Summary and Conclusions 5 Random Forests 5.1 Introduction and Overview 5.1.1 Unpacking How Random Forests Works 5.2 An Initial Illustration 5.3 A Few Formalities 5.3.1 What Is a Random Forest? 5.3.2 Margins and Generalization Error for Classifiers in General 5.3.3 Generalization Error for Random Forests 5.3.4 The Strength of a Random Forest 5.3.5 Dependence 5.3.6 Implications 5.4 Random Forests and Adaptive Nearest Neighbor Methods 5.5 Taking Costs into Account in Random Forests 5.5.1 A Brief Illustration 5.6 Determining the Importance of the Predictors 5.6.1 Contributions to the Fit 5.6.2 Contributions to Forecasting Skill 5.7 Response Functions 5.7.1 An Example 5.8 The Proximity Matrix 5.8.1 Clustering by Proximity Values 5.8.2 Using Proximity Values to Impute Missing Data 5.8.3 Using Proximities to Detect Outliers 5.9 Quantitative Response Variables 5.10 Tuning Parameters 5.11 An Illustration Using a Binary Response Variable 5.12 An Illustration Using a Quantitative Response Variable 5.13 Software Considerations 5.14 Summary and Conclusions 5.14.1 Problem Set 1 5.14.2 Problem Set 2 5.14.3 Problem Set 3 6 Boosting 6.1 Introduction 6.2 Adaboost 6.2.1 A Toy Numerical Example of Adaboost 6.2.2 A Statistical Perspective on Adaboost 6.3 Why Does Adaboost Work So Well? 6.3.1 Least Angle Regression (LARS) 6.4 Stochastic Gradient Boosting 6.4.1 Tuning Parameters 6.4.2 Output 6.5 Some Problems and Some Possible Solutions 6.5.1 Some Potential Problems 6.5.2 Some Potential Solutions 6.6 Some Examples 6.6.1 A Garden Variety Data Analysis 6.6.2 Inmate Misconduct Again 6.6.3 Homicides and the Impact of Executions 6.6.4 Imputing the Number of Homeless 6.6.5 Estimating Conditional Probabilities 6.7 Software Considerations 6.8 Summary and Conclusions 7 Support Vector Machines 7.1 A Simple Didactic Illustration 7.2 Support Vector Machines in Pictures 7.2.1 Support Vector Classifiers 7.2.2 Support Vector Machines 7.3 Support Vector Machines in Statistical Notation 7.3.1 Support Vector Classifiers 7.3.2 Support Vector Machines 7.3.3 SVM for Regression 7.4 A Classification Example 7.4.1 SVM Analysis with a Linear Kernel 7.4.2 SVM Analysis with a Radial Kernel 7.4.3 Varying Tuning Parameters 7.4.4 Taking the Costs of Classification Errors into Account 7.4.5 Comparisons to Logistic Regression 7.5 Software Considerations 7.6 Summary and Conclusions 8 Broader Implications and a Bit of Craft Lore 8.1 Some Fundamental Limitations of Statistical Learning 8.2 Some Assets of Statistical Learning 8.2.1 The Attitude Adjustment 8.2.2 Selectively Better Performance 8.2.3 Improving Other Procedures 8.3 Some Practical Suggestions 8.3.1 Matching Tools to Jobs 8.3.2 Getting to Know Your Software 8.3.3 Not Forgetting the Basics 8.3.4 Getting Good Data 8.3.5 Being Sensitive to Overtuning 8.3.6 Matching Your Goals to What You Can Credibly Do 8.4 Some Concluding Observations References Index
展開全部

基于回歸視野的統計學習 作者簡介

《基于回歸視野的統計學習》作者是賓夕法尼亞大學數理統計系教授,研究領域廣泛,在社會科學和自然科學均有很深的造詣。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 亚洲综合精品香蕉久久网 | 久久夜色精品国产亚洲av | 亚洲精品一二三区-久久 | 久久久国产精华特点 | 成人勉费视频 | 午夜精品18视频 | 尤里与露珠韩剧在线观看中文版 | 亚洲av片不卡无码久久蜜芽 | 午夜一区二区国产好的精华液 | 日本视频在线免费 | 国产一区亚洲欧美成人 | 亚洲夜夜骑 | 亚洲av成人精品日韩一区 | 国产写真福利视频在线 | 国产成人午夜极速观看 | 欧美一级在线播放 | 国产丰满眼镜女在线观看 | 乱子伦视频在线看 | 精品三区| 日本三级韩国三级美三级91 | 国产精品精品国产一区二区 | 精品国产这么小也不放过 | 欧美日韩一区二区视频图片 | 日欧一片内射va在线影院 | 插鸡网站在线播放免费观看 | 国产一区二区三区电影 | 久久夜色精品国产噜噜亚洲av | 久揄揄鲁一二三四区高清在线 | 欧美成人性做爰网站免费 | 日本丰满岳乱妇在线观看 | 九九在线精品视频播放 | 99久久精品国产国产毛片 | 亚洲国产精品视频 | 免费观看小视频 | 2021国内精品久久久久影院 | 亚洲av综合色区无码专区桃色 | 亚洲成人第一页 | 亚洲色无码中文字幕手机在线 | 99久久亚洲精品无码毛片 | 亚洲精品一区亚洲精品 | 91久久亚洲精品国产一区二区 |