三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >>
長距離相互作用.隨機及分數維動力學

包郵 長距離相互作用.隨機及分數維動力學

出版社:高等教育出版社出版時間:2010-06-01
開本: 16開 頁數: 308
本類榜單:自然科學銷量榜
中 圖 價:¥55.4(8.1折) 定價  ¥68.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

長距離相互作用.隨機及分數維動力學 版權信息

長距離相互作用.隨機及分數維動力學 本書特色

《長距離相互作用、隨機及分數維動力學》:Nonlinear Physical Science focuses on the recent advances of fundamental theories and principles, analytical and symbolic approaches, as well as computational techniques in nonlinear physical science and nonlinear mathematics with engineering applications.

長距離相互作用.隨機及分數維動力學 內容簡介

in memory of dr. george zaslavsky, long-range interactions, stochasticity and fractional dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. the book is dedicated to dr. george zaslavsky, who was one of three founders of the theory of hamiltonian chaos. the book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. a comprehensive theory for brain dynamics is also presented. in addition, the complexity and stochasticity for soliton chains and turbulence are addressed.
the book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.

長距離相互作用.隨機及分數維動力學 目錄

1 fractional zaslavsky and henon discrete maps
vasily e. tarasov
1.1 introduction
1.2 fractional derivatives
1.2.1 fractional riemann-liouville derivatives
1.2.2 fractional caputo derivatives
1.2.3 fractional liouville derivatives
1.2.4 interpretation of equations with fractional derivatives.
1.2.5 discrete maps with memory
1.3 fractional zaslavsky maps
1.3.1 discrete chirikov and zaslavsky maps
1.3.2 fractional universal and zaslavsky map
1.3.3 kicked damped rotator map
1.3.4 fractional zaslavsky map from fractional differential equations
1.4 fractional h6non map
1.4.1 henon map
1.4.2 fractional henon map
1.5 fractional derivative in the kicked term and zaslavsky map
1.5.1 fractional equation and discrete map
1.5.2 examples
1.6 fractional derivative in the kicked damped term and generalizations of zaslavsky and henon maps
1.6.1 fractional equation and discrete map
1.6.2 fractional zaslavsky and henon maps
1.7 conclusion
references
2 self-similarity, stochasticity and fractionality
vladimir v uchaikin
2.1 introduction
2.1.1 ten years ago
2.1.2 two kinds of motion
2.1.3 dynamic self-similarity
2.1.4 stochastic self-similarity
2.1.5 self-similarity and stationarity
2.2 from brownian motion to levy motion
2.2.1 brownian motion
2.2.2 self-similar brownian motion in nonstationary nonhomogeneous environment
2.2.3 stable laws
2.2.4 discrete time levy motion
2.2.5 continuous time levy motion
2.2.6 fractional equations for continuous time levy motion
2.3 fractional brownian motion
2.3.1 differential brownian motion process
2.3.2 integral brownian motion process
2.3.3 fractional brownian motion
2.3.4 fractional gaussian noises
2.3.5 barnes and allan model
2.3.6 fractional levy motion
2.4 fractional poisson motion
2.4.1 renewal processes
2.4.2 self-similar renewal processes
2.4.3 three forms of fractal dust generator
2.4.4 nth arrival time distribution
2.4.5 fractional poisson distribution
2.5 fractional compound poisson process
2.5.1 compound poisson process
2.5.2 levy-poisson motion
2.5.3 fractional compound poisson motion
2.5.4 a link between solutions
2.5.5 fractional generalization of the levy motion
acknowledgments
appendix. fractional operators
references
3 long-range interactions and diluted networks
antonia ciani, duccio fanelli and stefano ruffo
3.1 long-range interactions
3.1.1 lack of additivity
3.1.2 equilibrium anomalies: ensemble inequivalence, negative specific heat and temperature jumps
3.1.3 non-equilibrium dynamical properties
3.1.4 quasi stationary states
3.1.5 physical examples
3.1.6 general remarks and outlook
3.2 hamiltonian mean field model: equilibrium and out-of- equilibrium features
3.2.1 the model
3.2.2 equilibrium statistical mechanics
3.2.3 on the emergence of quasi stationary states: non-
equilibrium dynamics
3.3 introducing dilution in the hamiltonian mean field model
3.3.1 hamiltonian mean field model on a diluted network
3.3.2 on equilibrium solution of diluted hamiltonian mean field
3.3.3 on quasi stationary states in presence of dilution
3.3.4 phase transition
3.4 conclusions
acknowledgments
references
4 metastability and transients in brain dynamics: problems and rigorous results
valentin s. afraimovich, mehmet k. muezzinoglu and
mikhail i. rabinovich
4.1 introduction: what we discuss and why now
4.1.1 dynamical modeling of cognition
4.1.2 brain imaging
4.1.3 dynamics of emotions
4.2 mental modes
4.2.1 state space
4.2.2 functional networks
4.2.3 emotion-cognition tandem
4.2.4 dynamical model of consciousness
4.3 competition--robustness and sensitivity
4.3.1 transients versus attractors in brain
4.3.2 cognitive variables
4.3.3 emotional variables
4.3.4 metastability and dynamical principles
4.3.5 winnerless competition--structural stability of transients
4.3.6 examples: competitive dynamics in sensory systems
4.3.7 stable heteroclinic channels
4.4 basic ecological model
4.4.1 the lotka-volterra system
4.4.2 stress and hysteresis
4.4.3 mood and cognition
4.4.4 intermittent heteroclinic channel
4.5 conclusion
acknowledgments
appendix 1
appendix 2
references
5 dynamics of soliton chains: from simple to complex and chaotic motions
konstantin a. gorshkov, lev a. ostrovsky and yury a. stepanyants
5.1 introduction
5.2 stable soliton lattices and a hierarchy of envelope solitons
5.3 chains of solitons within the framework of the gardner model
5.4 unstable soliton lattices and stochastisation
5.5 soliton stochastisation and strong wave turbulence in a resonator with external sinusoidal pumping
5.6 chains of two-dimensional solitons in positive-dispersion media
5.7 conclusion
few words in memory of george m. zaslavsky
references
6 what is control of turbulence in crossed fields?-don't even think of eliminating all vortexes!
dimitri volchenkov
6.1 introduction
6.2 stochastic theory of turbulence in crossed fields: vortexes of all sizes die out, but one
6.2.1 the method of renormalization group
6.2.2 phenomenology of fully developed isotropic turbulence
6.2.3 quantum field theory formulation of stochastic navier-stokes turbulence
6.2.4 analytical properties of feynman diagrams
6.2.5 ultraviolet renormalization and rg-equations
6.2.6 what do the rg representations sum?
6.2.7 stochastic magnetic hydrodynamics
6.2.8 renormalization group in magnetic hydrodynamics
6.2.9 critical dimensions in magnetic hydrodynamics
6.2.10 critical dimensions of composite operators in magnetic hydrodynamics
6.2.11 operators of the canonical dimension d = 2
6.2.12 vector operators of the canonical dimension d = 3
6.2.13 instability in magnetic hydrodynamics
6.2.14 long life to eddies of a preferable size
6.3 in search of lost stability
6.3.1 phenomenology of long-range turbulent transport in the scrape-off layer (sol) of thermonuclear reactors
6.3.2 stochastic models of turbulent transport in cross-field systems
6.3.3 iterative solutions in crossed fields
6.3.4 functional integral formulation of cross-field turbulent transport
6.3.5 large-scale instability of iterative solutions
6.3.6 turbulence stabilization by the poloidal electric drift
6.3.7 qualitative discrete time model of anomalous transport in the sol
6.4 conclusion
references
7 entropy and transport in billiards
m. courbage and s.m. saberi fathi
7.1 introduction
7.2 entropy
7.2.1 entropy in the lorentz gas
7.2.2 some dynamical properties of the barrier billiard model
7.3 transport
7.3.1 transport in lorentz gas
7.3.2 transport in the barrier billiard
7.4 concluding remarks
references
index
展開全部

長距離相互作用.隨機及分數維動力學 節選

《長距離相互作用、隨機及分數維動力學》內容簡介:In memory of Dr. George Zaslavsky, Long-range Interactions, Stochasticity and Fractional Dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.

長距離相互作用.隨機及分數維動力學 相關資料

插圖:Note that the continuous limit of discrete systems with power-law long-range interactions gives differential equations with derivatives of non-integer orders with respect to coordinates (Tarasov and Zaslavsky, 2006; Tarasov, 2006). Fractional differentiation with respect to time is characterized by long-term memory effects that correspond to intrinsic dissipative processes in the physical systems. The memory effects to discrete maps mean that their present state evolution depends on all past states. The discrete maps with memory are considered in the papers (Fulinski and Kleczkowski, 1987;Fick et al., 1991; Giona, 1991; Hartwich and Fick, 1993; Gallas, 1993; Stanislavsky,2006; Tarasov and Zaslavsky, 2008; Tarasov, 2009; Edelman and Tarasov, 2009).The interesting question is a connection of fractional equations of motion and thediscrete maps with memory. This derivation is realized for universal and standard maps in (Tarasov and Zaslavsky, 2008; Tarasov, 2009). It is important to derive discrete maps with memory from equations of motion with fractional derivatives. It was shown (Zaslavsky et al., 2006) that perturbed by aperiodic force, the nonlinear system with fractional derivative exhibits a new type of chaotic motion called the fractional chaotic attractor.

長距離相互作用.隨機及分數維動力學 作者簡介

編者:羅朝俊 (墨西哥)阿弗萊諾維奇(Valentin Afraimovich) 叢書主編:(瑞典)伊布拉基莫夫Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville,USA.Dr. Valentin Afraimovich is a Proiessor at San Luis Potosi University, Mexico.

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6
日本一区二区三级电影在线观看| 影音先锋欧美资源| 精品一区二区三区免费毛片爱| 一区二区三区免费观看| 国产精品国产三级国产有无不卡| 久久久久久久性| 国产欧美一区二区精品性色| 国产精品嫩草久久久久| 中文字幕制服丝袜成人av | 精品无人码麻豆乱码1区2区| 捆绑变态av一区二区三区| 蜜桃视频第一区免费观看| 久久精品免费看| 韩国在线一区二区| www.66久久| 精品91免费| 亚洲人久久久| 在线播放亚洲一区| 久久亚洲一级片| 亚洲色欲色欲www在线观看| 亚洲资源在线观看| 蜜臀av性久久久久蜜臀av麻豆| 韩国v欧美v亚洲v日本v| www.日韩精品| 欧美日韩亚洲一区二区三区四区| 性欧美精品一区二区三区在线播放 | 亚洲.国产.中文慕字在线| 人人精品人人爱| 国产成人免费在线观看不卡| www.成人三级视频| 日本精品免费| 欧美精品久久99| 中文字幕成人网| 毛片av一区二区| 91玉足脚交白嫩脚丫在线播放| 韩国成人av| 在线视频欧美区| 国产午夜三级一区二区三| 亚洲永久精品国产| 丁香婷婷综合色啪| 欧美成ee人免费视频| 在线免费观看日韩欧美| 久久久五月婷婷| 午夜视黄欧洲亚洲| 成人精品电影在线观看| 欧美一区二区视频17c| 欧美二区三区的天堂| 欧美激情一二三区| 免费高清不卡av| 97超碰资源| 在线精品视频免费播放| 国产欧美视频在线观看| 热久久免费视频| 国产精品久久久对白| 欧美在线影院一区二区| 国产午夜精品一区二区三区视频| 免费一区二区视频| 精品乱码一区| 日韩欧美的一区| 日日摸夜夜添夜夜添精品视频| 91片黄在线观看| 91国在线观看| 亚洲精品菠萝久久久久久久| 国产成人综合视频| 五月天亚洲综合情| 日本一区二区三区视频视频| 麻豆91精品视频| 色噜噜狠狠一区二区三区| 久久久久国色av免费看影院| 亚洲风情在线资源站| 97se国产在线视频| 91精品在线免费观看| 亚洲成人一区二区| 国产欧美一区二区视频| 91麻豆精品久久久久蜜臀| 亚洲一级二级三级在线免费观看| 97se在线视频| 欧美大尺度电影在线| 免费观看一级欧美片| 日本不卡免费新一二三区| 国产精品天干天干在观线| 国产不卡视频一区二区三区| 在线观看免费亚洲| 亚洲不卡一区二区三区| 国产乱码精品一区二区三区中文 | 国产成a人无v码亚洲福利| 一本色道久久综合亚洲二区三区| 亚洲视频免费观看| 成人在线看片| 国产婷婷色一区二区三区| 成人自拍视频在线| 欧美情侣在线播放| 精品无人码麻豆乱码1区2区 | 男女视频一区二区| 日韩亚洲视频| 伊人夜夜躁av伊人久久| 久久精品国产美女| 国产精品国产三级国产aⅴ原创| 91理论电影在线观看| 久久久不卡网国产精品一区| 国产成人av电影在线观看| 91精品国产综合久久久久久久久久 | 亚洲精品免费在线看| 亚洲一区在线视频| 日韩精品一区二区三区四区五区| 亚洲精品欧美在线| 欧美日韩一区二区视频在线观看| 成人欧美一区二区三区黑人麻豆 | 日韩欧美视频一区二区| 亚洲欧美日韩在线| 日韩在线三区| 午夜影院久久久| 在线视频国内自拍亚洲视频| 麻豆精品在线播放| 6080午夜不卡| 91视频免费看| 中文字幕在线一区二区三区| 日本一区二区三区免费观看| 天天操天天色综合| 欧美亚洲愉拍一区二区| 韩国av一区二区三区| 欧美一区二区三区系列电影| 成人国产精品免费观看视频| 国产欧美精品区一区二区三区| 国产伦精品一区二区三区视频黑人 | 国产91丝袜在线18| 久久婷婷色综合| 精品一区二区国产| 亚洲地区一二三色| 欧美综合色免费| 岛国精品在线观看| 国产午夜精品理论片a级大结局 | 日韩一区二区精品在线观看| av电影在线观看一区| 国产精品美女久久久久久久 | 成人综合婷婷国产精品久久蜜臀| 久久久久国产精品人| 欧美一区二区在线视频观看| 日日摸夜夜添夜夜添精品视频| 欧美日韩高清一区二区不卡| 91女厕偷拍女厕偷拍高清| 自拍偷拍国产亚洲| 欧洲一区二区三区免费视频| 91麻豆产精品久久久久久| 亚洲一区二区三区中文字幕在线| 欧美日韩精品一区二区三区四区 | 中文字幕一区二区三区不卡| 色姑娘综合av| 国产成人精品亚洲午夜麻豆| 国产精品初高中害羞小美女文| 亚洲开发第一视频在线播放| 国产精品18久久久久久vr| 国产精品福利av| 欧美日韩日日骚| www 成人av com| 青青草原综合久久大伊人精品优势| 日韩欧美www| 色综合电影网| 成人美女视频在线观看| 亚洲综合在线视频| 精品少妇一区二区三区视频免付费| 日本一区视频在线观看免费| 国产成人av电影在线观看| 亚洲视频你懂的| 日韩欧美国产1| 伊人情人网综合| 999热视频| 国产又黄又大久久| 亚洲尤物在线视频观看| 欧美岛国在线观看| 亚洲国产精品毛片| 99视频国产精品免费观看| 美女www一区二区| 国产精品国产a| 欧美xingq一区二区| 亚洲精品一卡二卡三卡四卡| 999日本视频| 国产成人精品亚洲午夜麻豆| 一区二区三区在线观看动漫| 精品福利一区二区三区免费视频| 亚洲资源在线网| 麻豆传媒一区| 99久久无色码| av在线不卡观看免费观看| 麻豆91精品视频| 亚洲综合小说图片| 中文一区一区三区高中清不卡| 欧美精品日韩一本| 色婷婷综合久久久久中文| 久久国产精品久久| caoporen国产精品| 99re这里都是精品| 成人一二三区视频| 国产精品中文欧美| 久久成人免费日本黄色| 亚洲二区在线观看| 亚洲一区在线视频| 亚洲精品成人在线| 国产精品久久久久久久蜜臀| 久久先锋资源网|