国产第1页_91在线亚洲_中文字幕成人_99久久久久久_五月宗合网_久久久久国产一区二区三区四区

讀書月攻略拿走直接抄!
歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)
> >>
基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書應(yīng)用回歸及分類/基于R與Python的實(shí)現(xiàn)(第2版)(基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書)

包郵 基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書應(yīng)用回歸及分類/基于R與Python的實(shí)現(xiàn)(第2版)(基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書)

出版社:中國(guó)人民大學(xué)出版社出版時(shí)間:2020-10-01
開本: 其他 頁(yè)數(shù): 340
本類榜單:教材銷量榜
中 圖 價(jià):¥34.1(7.4折) 定價(jià)  ¥46.0 登錄后可看到會(huì)員價(jià)
加入購(gòu)物車 收藏
開年大促, 全場(chǎng)包郵
?新疆、西藏除外
本類五星書更多>

基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書應(yīng)用回歸及分類/基于R與Python的實(shí)現(xiàn)(第2版)(基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書) 版權(quán)信息

基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書應(yīng)用回歸及分類/基于R與Python的實(shí)現(xiàn)(第2版)(基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書) 內(nèi)容簡(jiǎn)介

本書包括的內(nèi)容有: 經(jīng)典線性回歸、⼴義線性模型、混合效應(yīng)模型 (分層模型)、機(jī)器學(xué)習(xí)回歸⽅法 (決策樹、bagging、隨機(jī)森林、各種 boosting ⽅法、⼈⼯神經(jīng)⽹絡(luò)、⽀持向量機(jī)、k 很近鄰⽅法)、⽣存分析及 Cox 模型、經(jīng)典判別分析與 logistic 回歸分類、機(jī)器學(xué)習(xí)分類⽅法 (決策樹、bagging、隨機(jī)森林、adaboost、⼈⼯神經(jīng)⽹絡(luò)、⽀持向量機(jī)、k 很近鄰⽅法).其中, 混合效應(yīng)模型、⽣存分析及 Cox 模型的內(nèi)容可根據(jù)需要選⽤, 所有其他的內(nèi)容都應(yīng)該在教學(xué)中涉及, 可以簡(jiǎn)化甚⾄忽略的內(nèi)容為⼀些數(shù)學(xué)推導(dǎo)和某些不那么很好的模型, 不可以忽略的是各種⽅法的直觀意義及理念.
本書的宗旨就是既要介紹傳統(tǒng)的回歸和分類⽅法, 又要引⼊⼤量更加有效的機(jī)器學(xué)習(xí)⽅法, 并且通過(guò)實(shí)際例⼦, 運(yùn)⽤ R 和 Python 兩種軟件來(lái)讓讀者理解各種⽅法的意義和實(shí)踐,能夠⾃主做數(shù)據(jù)分析并得到結(jié)論。

基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書應(yīng)用回歸及分類/基于R與Python的實(shí)現(xiàn)(第2版)(基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書) 目錄

第1章 引言
1.1 作為科學(xué)的統(tǒng)計(jì)
1.2 傳統(tǒng)參數(shù)模型和機(jī)器學(xué)習(xí)算法模型
1.3 數(shù)理統(tǒng)計(jì)中顯著性檢驗(yàn)及置信區(qū)間本質(zhì)的啟示
第2章 經(jīng)典線性回歸
2.1 模型形式
2.2 用*小二乘法估計(jì)線性模型
2.3 回歸系數(shù)的大小沒(méi)有可解釋性
2.4 關(guān)于線性回歸系數(shù)的性質(zhì)和推斷*
2.5 通過(guò)一個(gè)“教科書數(shù)據(jù)”來(lái)理解簡(jiǎn)單*小二乘回歸
2.6 一個(gè)“非教科書數(shù)據(jù)”例子
2.7 處理線性回歸多重共線性的經(jīng)典方法*
2.8 損失函數(shù)及分位數(shù)回歸簡(jiǎn)介
2.9 本章Python 運(yùn)行代碼
2.10 習(xí)題
第3章 廣義線性模型
3.1 模型
3.2 指數(shù)分布族及典則連接函數(shù)
3.3 似然函數(shù)和準(zhǔn)似然函數(shù)
3.4 廣義線性模型的一些推斷問(wèn)題
3.5 logistic 回歸和二元分類問(wèn)題
3.6 Poisson 對(duì)數(shù)線性模型及頻數(shù)數(shù)據(jù)的預(yù)測(cè)
3.7 本章Python 運(yùn)行代碼
3.8 習(xí)題
第4章 機(jī)器學(xué)習(xí)回歸方法
4.1 引言
4.2 作為基本模型的決策樹(回歸樹)
4.3 組合方法的思想
4.4 bagging 回歸
4.5 隨機(jī)森林回歸
4.6 mboost 回歸
4.7 人工神經(jīng)網(wǎng)絡(luò)回歸
4.8 支持向量機(jī)回歸
4.9 k *近鄰回歸
4.10 本章Python 運(yùn)行代碼
4.11 習(xí)題
第5章 經(jīng)典分類: 判別分析
5.1 線性判別分析
5.2 Fisher 判別分析
5.3 混合線性判別分析
5.4 各種方法擬合衛(wèi)星圖像數(shù)據(jù)(例5.1) 的比較
5.5 本章Python 運(yùn)行代碼
5.6 習(xí)題
第6章 機(jī)器學(xué)習(xí)分類方法
6.1 作為基本模型的決策樹(分類樹)
6.2 bagging 分類
6.3 隨機(jī)森林分類
6.4 AdaBoost 分類
6.5 人工神經(jīng)網(wǎng)絡(luò)分類
6.6 支持向量機(jī)分類
6.7 k *近鄰方法分類
6.8 樸素貝葉斯分類
6.9 對(duì)慢性腎病數(shù)據(jù)(例6.1) 做各種方法分類的交叉驗(yàn)證
6.10 案例分析: 蘑菇可食性數(shù)據(jù)
6.11 案例分析: 手寫數(shù)字筆跡識(shí)別
6.12 本章Python 運(yùn)行代碼
6.13 第5章和第6章習(xí)題
第7章 混合效應(yīng)模型*
7.1 概念
7.2 通過(guò)一個(gè)數(shù)值例子解釋線性混合模型
7.3 線性混合模型的一般形式
7.4 廣義線性混合模型
7.5 決策樹關(guān)聯(lián)的混合模型
7.6 對(duì)數(shù)學(xué)分?jǐn)?shù)數(shù)據(jù)(例7.2) 做REEM、GLMM、lmer 及其他模型預(yù)測(cè)精度的交叉驗(yàn)證比較
7.7 Python關(guān)于數(shù)學(xué)分?jǐn)?shù)數(shù)據(jù)(例7.2)的混合效應(yīng)隨機(jī)森林及交叉驗(yàn)證比較
7.8 習(xí)題
第8章 生存分析及Cox 模型*
8.1 基本概念
8.2 生存函數(shù)的Kaplan-Meier 估計(jì)
8.3 累積危險(xiǎn)函數(shù)
8.4 估計(jì)和檢驗(yàn)*
8.5 Cox 比例危險(xiǎn)模型
8.6 本章Python 運(yùn)行代碼
8.7 習(xí)題
第9章 基本軟件: R和Python
9.1 R 簡(jiǎn)介——為領(lǐng)悟而運(yùn)行
9.2 Python 簡(jiǎn)介——為領(lǐng)悟而運(yùn)行
9.3 習(xí)題
參考文獻(xiàn)
展開全部

基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書應(yīng)用回歸及分類/基于R與Python的實(shí)現(xiàn)(第2版)(基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書) 節(jié)選

本書不像很多教科書那樣只講80年之前的以數(shù)學(xué)假定和推導(dǎo)為主的內(nèi)容, ??要強(qiáng)調(diào)*近20年*新和*有效的統(tǒng)計(jì)??法. 本書所有的分析都通過(guò)免費(fèi)的??由軟件R2及Python 軟件來(lái)實(shí)現(xiàn). 讀者可以毫不困難地重復(fù)本書所有的計(jì)算. R ??站擁有世界各地統(tǒng)計(jì)學(xué)家貢獻(xiàn)的??量*新程序包(package),這些程序包以飛快的速度增加和更新, 已從2009年底的不到1000個(gè)增加到2019年底的15000多個(gè). 它們代表了統(tǒng)計(jì)學(xué)家創(chuàng)造的針對(duì)各個(gè)統(tǒng)計(jì)??向及不同應(yīng)??領(lǐng)域的嶄新統(tǒng)計(jì)??法. 這些程序包的代碼??多是公開的.

基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書應(yīng)用回歸及分類/基于R與Python的實(shí)現(xiàn)(第2版)(基于R應(yīng)用的統(tǒng)計(jì)學(xué)叢書) 作者簡(jiǎn)介

吳喜之,北京大學(xué)數(shù)學(xué)力學(xué)系本科,美國(guó)北卡羅來(lái)納大學(xué)統(tǒng)計(jì)博士。中國(guó)人民大學(xué)統(tǒng)計(jì)學(xué)院教授,博士生導(dǎo)師。曾在美國(guó)加利福尼亞大學(xué)、北卡羅來(lái)納大學(xué)以及南開大學(xué)、北京大學(xué)等多所著名學(xué)府執(zhí)教。

商品評(píng)論(0條)
暫無(wú)評(píng)論……
書友推薦
本類暢銷
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: 久久国产精品成人片免费 | 91成人国产 | 热99精品视频 | 亚洲一级毛片 | 中文字幕在线国产 | 国产亚洲精品久久久久久国模美 | 亚洲精品久久久av无码专区 | 亚洲无人区一区二区三区 | 无码人妻一区二区三区免费看 | 国产一区二区三区免费在线视频 | 四虎影视在线影院在线观看观看 | 久久亚洲国产精品 | 国产高清视频在线观看不卡v | 亚洲精品久久9热 | 亚洲精品一区二区三区四区 | 人人干人人艹 | 99亚洲精品 | 国产精品秘入口18禁麻豆免会员 | 国产在线视频网 | 亚洲综合久久成人69 | 99精品国产闺蜜国产在线闺蜜 | 久久丫精品忘忧草西安产品 | 久久久免费网站 | 国产乱子伦视频在线观看 | 免费看一级做a爰片久久 | 色偷偷偷久久伊人大杳蕉 | 天天躁日日躁狠狠躁欧美老妇小说 | 国产精品视频一区国模私拍 | 日本嫩草| 中文字幕咪咪网 | 亚洲国产天堂在线网址 | 国产特黄特色的大片观看免费视频 | 无码a级毛片免费视频内谢 无码a级毛片免费视频内谢5j | 亚洲 自拍 在线 丝袜 | 欧美在线观看一区二区三区 | 亚洲毛片免费观看 | 欧产日产国产精品精品 | 美日韩一区二区三区 | 日本边添边摸边做边爱 | 97青青青国产在线播放 | 日本aⅴ在线观看 |