三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >
機器學習統計學-(影印版)

包郵 機器學習統計學-(影印版)

出版社:東南大學出版社出版時間:2018-08-01
開本: 16開 頁數: 426
中 圖 價:¥73.5(7.5折) 定價  ¥98.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

機器學習統計學-(影印版) 版權信息

  • ISBN:9787564177553
  • 條形碼:9787564177553 ; 978-7-5641-7755-3
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

機器學習統計學-(影印版) 本書特色

機器學習所涉及的復雜統計學知識困擾了很多開 發者。知曉統計學知識可以幫助你為給定的問題構建 強壯的機器學習優化模型。
普拉塔普·丹格迪著的《機器學習統計學(影印 版)(英文版)》將教你機器學習所需的實現復雜統計 計算的相關內容,可以從中獲得監督學習、無監督學 習、強化學習等背后的統計學知識。你將看到討論機 器學習相關統計學內容的真實案例并熟悉它們。還能 學到用于實現建模、調參、回歸、分類、密度采集、 向量處理、矩陣等的相關程序。
學完本書,你會掌握機器學習所需的統計學知識 。并且能夠將所學新技能應用于任何行業問題。

機器學習統計學-(影印版) 內容簡介

本書將教你機器學習所需的實現復雜統計計算的相關內容,可以從中獲得監督學習、無監督學習、強化學習等背后的統計學知識。你將看到真實的案例,討論機器學習相關統計學內容,并讓你熟悉它們。還能學到用于實現建模、調參、回歸、分類、密度采集、處理向量、矩陣等的相關程序。學完本書,你會掌握機器學習所需的統計學知識,并且能夠將所學新技能應用于任何行業問題。

機器學習統計學-(影印版) 目錄

Preface
Chapter 1: Journey from Statistics to Machine Learning
Statistical terminology for model building and validation
Machine learning
Major differences between statistical modeling and machine learning
Steps in machine learning model development and deployment
Statistical fundamentals and terminology for model building andvalidation
Bias versus variance trade-off
Train and test data
Machine learning terminology for model building and validation
Linear regression versus gradient descent
Machine learning losses
When to stop tuning machine learning models
Train, validation, and test data
Cross-validation
Grid search
Machine learning model overview
Summary
Chapter 2: Parallelism of Statistics and Machine Learning
Comparison between regression and machine learning models
Compensating factors in machine learning models
Assumptions of linear regression
Steps applied in linear regression modeling
Example of simple linear regression from first principles
Example of simple linear regression using the wine quality data
Example of multilinear regression - step-by-step methodology of model
building
Backward and forward selection
Machine learning models - ridge and lasso regression
Example of ridge regression machine learning
Example of lasso regression machine learning model
Regularization parameters in linear regression and ridge/lasso regression
Summary
Chapter 3: Logistic Regression Versus Random Forest
Maximum likelihood estimation
Logistic regression - introduction and advantages
Terminology involved in logistic regression
Applying steps in logistic regression modeling
Example of logistic regression using German credit data
Random forest
Example of random forest using German credit data
Grid search on random forest
Variable importance plot
Comparison of logistic regression with random forest
Summary
Chapter 4: Tree-Based Machine Learning Models
Introducing decision tree classifiers
Terminology used in decision trees
Decision tree working methodology from first principles
Comparison between logistic regression and decision trees
Comparison of error components across various styles of models
Remedial actions to push the model towards the ideal region
HR attrition data example
Decision tree classifier
Tuning class weights in decision tree classifier
Bagging classifier
Random forest classifier
Random forest classifier - grid search
AdaBoost classifier
Gradient boosting classifier
Comparison between AdaBoosting versus gradient boosting
Extreme gradient boosting - XGBoost classifier
Ensemble of ensembles - model stacking
Ensemble of ensembles with different types of classifiers
Ensemble of ensembles with bootstrap samples using a single type of
classifier
Summary
Chapter 5: K-Nearest Neighbors and Naive Bayes
K-nearest neighbors
KNN voter example
Curse of dimensionality
Curse of dimensionality with 1D, 2D, and 3D example
KNN classifier with breast cancer Wisconsin data example
Tuning of k-value in KNN classifier
Naive Bayes
Probability fundamentals
Joint probability
Understanding Bayes theorem with conditional probability
Naive Bayes classification
Laplace estimator
Naive Bayes SMS spam classification example
Summary
Chapter 6: Support Vector Machines and Neural Networks
Support vector machines working principles
Maximum margin classifier
Support vector classifier
Support vector machines
Kernel functions
SVM multilabel classifier with letter recognition data example
Maximum margin classifier - linear kernel
Polynomial kernel
RBF kernel
Artificial neural networks -ANN
Activation functions
Forward propagation and backpropagation
Optimization of neural networks
Stochastic gradient descent - SGD
Momentum
Nesterov accelerated gradient - NAG
Adagrad
Adadelta
RMSprop
Adaptive moment estimation - Adam
Limited-memory broyden-fletcher-goldfarb-shanno - L-BFGS
optimization algorithm
Dropout in neural networks
ANN classifier applied on handwritten digits using scikit-learn
Introduction to deep learning
Solving methodology
Deep learning software
Deep neural network classifier applied on handwritten digits using Keras
Summary
Chapter 7: Recommendation Engines
Content-based filtering
Cosine similarity
Collaborative filtering
Advantages of collaborative filtering over content-based filtering
Matrix factorization using the alternating least squares algorithm for
collaborative filtering
Evaluation of recommendation engine model
Hyperparameter selection in recommendation engines using grid search
Recommendation engine application on movie lens data
User-user similarity matrix
Movie-movie similarity matrix
Collaborative filtering using ALS
Grid search on collaborative filtering
Summary
Chapter 8: Unsupervised Learning
K-means clustering
K-means working methodology from first principles
Optimal number of clusters and cluster evaluation
The elbow method
K-means clustering with the iris data example
Principal component analysis - PCA
PCA working methodology from first principles
PCA applied on handwritten digits using scikit-learn
Singular value decomposition - SVD
SVD applied on handwritten digits using scikit-learn
Deep auto encoders
Model building technique using encoder-decoder architecture
Deep auto encoders applied on handwritten digits using Keras
Summary
Chapter 9: Reinforcement Learning
Introduction to reinforcement learning
Comparing supervised, unsupervised, and reinforcement learning in detail
Characteristics of reinforcement learning
Reinforcement learning basics
Category 1 - value based
Category 2 - policy based
Category 3 - actor-critic
Category 4 - model-free
Category 5 - model-based
Fundamental categories in sequential decision making
Markov decision processes and Bellman equations
Dynamic programming
Algorithms to compute optimal policy using dynamic programming
Grid world example using value and policy iteration algorithms with basic Python
Monte Carlo methods
Comparison between dynamic programming and Monte Carlo methods
Key advantages of MC over DP methods
Monte Carlo prediction
The suitability of Monte Carlo prediction on grid-world problems
Modeling Blackjack example of Monte Carlo methods using Python
Temporal difference learning
Comparison between Monte Carlo methods and temporal difference
learning
TD prediction
Driving office example for TD learning
SARSA on-policy TD control
Q-learning - off-policy TD control
Cliff walking example of on-policy and off-policy of TD control
Applications of reinforcement learning with integration of machine
learning and deep learning
Automotive vehicle control - self-driving cars
Google DeepMind's AlphaGo
Robo soccer
Further reading
Summary
Index
展開全部
商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
三级一区在线视频先锋_丁香另类激情小说_中文字幕一区二区三_一本一道久久a久久精品综合蜜臀_一区二区三区四区国产精品_日韩**一区毛片_在线观看日韩电影_1000部国产精品成人观看_免费不卡在线视频_亚洲国产日日夜夜_国产亚洲精品福利_亚洲精品一区二区三区在线观看_欧美美女一区二区三区_日韩欧美色电影_欧美aaa在线_久久这里只有精品6
在线丝袜欧美日韩制服| 色综合久久av| 国产日韩av一区| 亚洲精品国产精品久久| 国产99精品在线观看| 亚洲网友自拍偷拍| 久久久综合视频| 欧洲av在线精品| 日本午夜精品一区二区三区| 99久久久精品| 国产精品1区二区.| 美国av一区二区| 一区二区三区视频在线观看| 久久久久久99精品| 国产偷国产偷精品高清尤物| 欧美一区二区久久| 在线视频观看一区| 91精品国产入口| 2024国产精品视频| 日韩视频不卡中文| 欧美网站一区二区| 亚洲一区美女| 视频一区视频二区视频三区视频四区国产| 日韩高清在线播放| 欧美极品jizzhd欧美| 国产精品久久久久久免费观看| 99精品久久免费看蜜臀剧情介绍| 高清国产一区| 精品视频一区在线| 国产欧美日韩一区二区三区| 91青青草免费在线看| 99re热这里只有精品免费视频 | 精品一区中文字幕| 蜜臀精品一区二区三区在线观看| 国产麻豆视频一区二区| 久久www免费人成看片高清| 日本sm残虐另类| 麻豆精品视频在线观看免费| 成人激情图片网| 99riav一区二区三区| 久久久久久久久久久久久久一区 | 国产精品福利一区二区三区| 国产精品私人影院| 国产精品国产自产拍高清av王其| 亚洲精品国产a| 亚洲国产一区二区三区青草影视| 韩日精品视频一区| 国产精品资源站在线| 国产毛片精品国产一区二区三区| 99久久精品久久久久久ai换脸| 99超碰麻豆| 91极品视觉盛宴| 777a∨成人精品桃花网| 日韩你懂的在线观看| 久久久久亚洲综合| 香蕉久久一区二区不卡无毒影院| 日本在线不卡视频| 韩国成人在线视频| 国产欧美韩日| 欧美大黄免费观看| 国产精品色呦呦| 国产资源精品在线观看| 欧美一区1区三区3区公司| 日韩精品一区二区三区老鸭窝 | 粉嫩13p一区二区三区| 日韩精品福利视频| 久久久国产午夜精品| 国产一区激情在线| 色一情一乱一伦一区二区三欧美| 精品粉嫩超白一线天av| 国产精品家庭影院| 成人午夜看片网址| 久久国产精品一区二区三区四区 | 成人免费毛片高清视频| 亚洲欧美99| 国产精品久久精品日日| 99久久精品国产导航| 4438成人网| 老汉av免费一区二区三区| 色99中文字幕| 亚洲人精品午夜| 精品一区二区在线看| 日本亚洲导航| 亚洲视频在线观看三级| 狠狠色丁香婷婷综合| 欧美日韩精品中文字幕一区二区| 欧美国产丝袜视频| 天堂成人免费av电影一区| 成人在线综合网站| 欧美日本精品一区二区三区| 国产欧美精品区一区二区三区| 国产精品99久久久久久久女警 | 日韩av电影天堂| 亚洲精品一区二区三| 亚洲精品久久久蜜桃| 精品国产乱码久久久久久88av| 久久精品综合网| 97免费高清电视剧观看| 久久久久久久久久美女| av不卡在线播放| 在线视频综合导航| 偷拍一区二区三区| 一区二区三区在线视频111| 亚洲高清一区二区三区| 亚洲不卡一卡2卡三卡4卡5卡精品| 一区二区三区四区国产精品| 欧美精品尤物在线| 亚洲一二三专区| 一本久道中文字幕精品亚洲嫩| 欧美国产精品一区二区| www日韩av| 国产精品久久久久久久久免费相片 | 欧美美女视频在线观看| 亚洲一区二区三区视频在线 | 欧美高清性xxxxhdvideosex| 亚洲图片你懂的| 欧美高清性xxxxhd | 亚洲欧洲中文日韩久久av乱码| 精品午夜一区二区三区| 亚洲欧洲综合另类| 午夜精品区一区二区三| 日韩精品欧美成人高清一区二区| 欧美在线不卡一区| 东方aⅴ免费观看久久av| www成人在线观看| 麻豆传媒一区二区| 国产欧美日韩另类视频免费观看 | 欧美精品vⅰdeose4hd| 成人动漫一区二区在线| 中文在线一区二区| 亚洲韩国在线| 国产精品一区二区三区乱码| 久久亚洲一区二区三区四区| 国内一区在线| 奇米影视一区二区三区小说| 91精品国产全国免费观看| 99爱精品视频| 婷婷久久综合九色国产成人| 在线播放日韩导航| 国产精品视频入口| 午夜欧美视频在线观看| 宅男在线国产精品| 精品欧美一区二区在线观看视频| 亚洲国产欧美在线| 日韩天堂在线观看| 欧美日韩免费精品| 丁香天五香天堂综合| 一区二区三区高清| 欧美高清精品3d| 麻豆av一区| 成人黄色小视频| 午夜精品视频一区| 久久亚洲一区二区三区四区| 亚洲欧洲中文| 99久久精品情趣| 午夜一区二区三区视频| 久久综合五月天婷婷伊人| 午夜精品一区二区三区四区 | 这里只有精品66| 99久久婷婷国产综合精品电影| 一区二区三区四区视频精品免费| 欧美日韩国产一区二区三区地区| 国产精华一区| 国产在线一区观看| 一区二区三区四区在线| 日韩欧美国产不卡| 一区二区三区av在线| 99国产高清| 久久成人免费网| 亚洲美女屁股眼交| 精品日韩一区二区三区免费视频| 亚洲不卡中文字幕| 91成人免费观看| 国模一区二区三区白浆| 一区2区3区在线看| 久久久久久免费毛片精品| 欧美色手机在线观看| 国产91精品一区二区麻豆网站| 亚洲日本免费电影| 精品国产一区二区三区久久久蜜月 | 亚洲久本草在线中文字幕| 欧美电视剧免费观看| 宅男av一区二区三区| 久久99久久精品国产| 9色porny自拍视频一区二区| 美国精品在线观看| 五月天一区二区三区| 亚洲日本一区二区三区| 国产欧美日产一区| 精品噜噜噜噜久久久久久久久试看| 色爱区综合激月婷婷| 日韩av不卡在线播放| 国产精品入口免费| 99久久婷婷国产| 丰满少妇久久久久久久| 精品亚洲欧美一区| 免费观看在线色综合| 一区二区三区欧美久久| 国产精品久久久久久户外露出| 久久久久久**毛片大全|